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A B S T R A C T

Serious water deficits and deteriorating environmental quality are threatening agricultural sustainabil-

ity in the North China Plain (NCP). This paper addresses spatial and temporal availability of water

resources in the NCP, identifies the effects of soil management, irrigation timing and amounts, and crop

genetic improvement on water use efficiency (WUE), and then discusses knowledge gaps and research

priorities to further improve WUE. Enhanced irrigation and soil nutrient (mainly nitrogen) management

are the focal issues in the NCP for enhancing WUE, which are shown to increase WUE by 10–25% in a

wheat–maize double cropping system. Crop breeding has also contributed to increased of WUE and is

expected to play an important role in the future as genetic and environmental interactions are

understood better. Agricultural system models and remote sensing have been used to evaluate and

improve current agronomic management practices for increasing WUE at field and regional scales. The

low WUE in farmer’s fields compared with well-managed experimental sites indicates that more efforts

are needed to transfer water-saving technologies to the farmers. We also identified several knowledge

gaps for further increasing WUE in the NCP by: (1) increasing scientific understanding of the effects of

agronomic management on WUE across various soil and climate conditions; (2) quantifying the

interaction between soil water and nitrogen in water-limited agriculture for improving both water and

nitrogen-use efficiency; (3) improving irrigation practices (timing and amounts) based on real-time

monitoring of water status in soil-crop systems; and (4) maximizing regional WUE by managing water

resources and allocation at regional scales.
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1. Introduction

The North China Plain (NCP) is also known as Yellow-Huai-Hai
Plain named after the three major rivers (Yellow River, Huai River
and Hai River) that traverse it (Fig. 1), and is the most important
wheat and maize production area in China. It produces about
29.6% of the nation’s food, including about half of the wheat
production and a third of the maize production (NBSC, 1998). The
main cropping system is wheat and maize double cropping (two
crops per year) with average water consumptions of about
450 mm for wheat and 360 mm for maize (Liu et al., 2001). Due to
a summer monsoon climate with about 70–80% of the mean
annual rainfall (550 mm) concentrated in the summer (July to
September), the rainfall during wheat growth period can only
meet 25–40% of the crop water requirement, which leaves a 200–
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300 mm water deficit in the northern part of the NCP (Liu et al.,
2001; Zhang et al., 2006b). Irrigation is critical for maintaining
high wheat yield, especially in the northern part of the NCP, and
about 75% of the agricultural land is irrigated and consumes 70–
80% of the total water resource allocation in the NCP (Lin et al.,
2000). In the recent years, however, increased water deficits
associated with overuse of surface water, declining groundwater
levels, water pollution, and soil salinization are threatening the
sustainability of agricultural production in the region (Hu et al.,
2005; Liu et al., 2001; Wang et al., 2007a). The water supply for
agricultural production will unavoidably decrease with the
increasing demands from domestic and industrial water users.
At the same time, the agricultural water use efficiency is still very
low due to the poor irrigation management practices (Deng et al.,
2006; Wang et al., 2002) and lack of investment in infrastructure
(Lohmar et al., 2003; Xu, 2001). Furthermore, recent studies
showed that climate change could greatly influence the water
cycle and aggravate the water crisis situation in the NCP (Tao et al.,
2003, 2005; Xiong et al., 2009).

mailto:fangqx@igsnrr.ac.cn
http://www.sciencedirect.com/science/journal/03783774
http://dx.doi.org/10.1016/j.agwat.2010.01.008


Fig. 1. The North China Plain (NCP), provinces, rivers and the experimental sites (*) for studying water use efficiency in the region.
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System-wide water saving can be obtained by reducing
unnecessary evapotranspiration (ET) and increasing crop water
use efficiency (WUE). Although seepage during water transmission
and deep drainage are of concern during peak demand, these
irrigation losses recharge the shallow aquifer and do not leave the
NCP system permanently (Kendy et al., 2004), even though energy
is required to pump it up. WUE can be calculated at the single leaf
level (leaf photosynthesis rate/leaf transpiration rate), canopy level
(crop biomass/ET), field level (crop yield/ET) or regional level (crop
yield/water available) (McVicar et al., 2002; Sinclair et al., 1984;
Wang, 1993). Precision irrigation practices and soil and crop
management can be used to improve WUE at these different levels,
and the interactions among these management practices are also
very important for regional water resource management in the
NCP (Table 1). Wang et al. (2002) and Deng et al. (2006) reviewed
water-saving agriculture in China by focusing on agronomic
options, and Kang et al. (2004a,b) discussed the technology and
theory of agricultural and ecological water-saving engineering.
Other recent reviews on improving WUE in a comprehensive way
under water limited conditions are the molecular plant breeding
and agronomic management for high WUE (Passioura, 2006),
generic principles for improving WUE at different scales (Bouman,
2007), improvement of irrigation methods to reduce water
demand and negative environmental impacts at farm level (Pereira
et al., 2002), and sustainable management of available water
resources at global, regional, and site-specific levels (Qadir et al.,
2003). Steduto et al. (2007) demonstrated the conservative
behavior of biomass water productivity defined as biomass/
transpiration, and methods for scaling water productivity from leaf
to regional scales. Water productivity defined by Kassam and
Smith (2001) can be quantified in terms of yield, nutritional value
or economic return. The WUE used here was defined as the ratio of
grain yield to ET at a field scale unless otherwise specified, which
has the same meaning as water productivity in terms of grain yield
per unit ET. In this paper, we first analyze the current water
resources (surface and ground water resources) situation in the
NCP and associated agricultural water use, and then assess the
current status of scientific research on agronomic management
practices for improving WUE in the NCP. Finally, the knowledge
gaps in agronomic management and future research needs for
enhancing WUE are discussed.

2. Water resources status in the NCP

Water resources in the NCP are scarce with uneven distribu-
tions both spatially and temporally, which makes it difficult to
achieve efficient water utilization (Liu and Wei, 1989). The surface
water resources in the NCP are mainly from surface runoff locally
in the NCP and from the adjacent mountainous regions. The Yellow
river is an important surface water resource in the area. On average
across the region, the annual runoff in the NCP is about 126 mm
(17.9%) for an annual rainfall of 704 mm and the rest is lost as
evportranspration (ET) (Liu and Wei, 1989). The average annual
discharge fraction (ratio of runoff to rainfall) varies from 11% in the
northern part (north Yellow river) to 22% in the southern part
(south Yellow river). The coefficient of variation in runoff across
years is high, increasing from 0.20 in north to 0.35 in south. The
average annual surface runoff in the three river basins is
3.82 � 1010 m3 with a decrease from south (Huai River basin) to
north (Hai River and Yellow River basins) (Fig. 2), which is only
1.5% of national surface water resource (Liu and Wei, 1989).
Discharge from the mountain regions comprises 48% of surface
water within the three river basins. The highest runoff from
mountain areas occurred in the Hai River basin (Fig. 2). Water
abstraction from the Yellow River is about 47%, which is higher
than other rivers in China. The annual water flow in the
downstream reaches of the Yellow River is 4.56 � 1010 m3 (within
the NCP), of which about 20% is used for agricultural and industrial
production in the river basin (Liu and Wei, 1989). Because the
Yellow River basin is the second-largest river basin in China and
contributes greatly to agricultural and socioeconomic develop-
ment, many studies have been carried out to analyze and evaluate
water resources in this river basin (Cai and Rosegrant, 2004; Liu
and Xia, 2004). Some studies showed that water scarcity and
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longer period of ‘no flow’ days have become more severe (Barnett
et al., 2006; Liu and Xia, 2004; Zhang et al., 2009). Also, an increase
in air temperature has been observed, with decreased precipita-
tion/runoff in the river basin in the last 50 years (Fu et al., 2004;
Yang et al., 2004; Zhang et al., 2009). Due to the high sediment
deposition under low water flows in the river, the rising river bed
has increased the threat of flooding in the lower reaches (Wang
et al., 2005a; Yu, 2002). The associated environmental problems
also showed high sensitivity to climatic change and human
activities (Zhang et al., 2009). Maintaining a reasonable flow in the
Yellow river is becoming one of the highest priorities for ecological
water requirement as argued by Barnett et al. (2006) and Webber
et al. (2008).

Estimates of groundwater resources differ depending on the
definition of the aquifer boundary and estimation methods (Fei,
1988; Liu and Wei, 1989). Fresh groundwater resources generally
increase from south to north and from piedmont areas to coastal
areas. Among the three river basins (Yellow River, Huai River and
Hai River), fresh shallow ground water resources are abundant in
the Huai River basin (more than 60% of water resources in the three
river basins) but are limited in the Yellow River basin (about 4%)
(Fig. 2). The groundwater dynamics have been studied in recent
years from both socioeconomic and scientific points of view
(Kendy et al., 2004; Liu et al., 2001; Wang et al., 2005b). The main
conclusion from these studies is that the groundwater table has
declined continuously, particularly in the northern part of the
region, due to intensive abstraction. The overdraft of groundwater
has caused land subsidence and seawater intrusion into fresh
water that has resulted in poor water quality in some areas. About
40,000 km2 of the southern Hai River basin had subsided more
than 200 mm as of 1995 (Liu et al., 2001; Wang et al., 2007a).

Fig. 3 is an example of groundwater table dynamics from 1974
to 2008 at Shijiazhuang city about 20 km south of Luancheng
Station (Fig. 1), where a high rate of decline (�0.8 m/yr) occurred
from 1978 to 2008. In the northern part of the NCP, groundwater
tables decreased at a rate from�0.32 m/yr between 1964 and 1984
and to�0.65 m/yr between 1984 and 1993 (Fig. 4). This result was
mainly due to the increase in groundwater withdrawals for
irrigation as surface water resources declined since the 1970s. The
groundwater accounted for from 40% to 58% of irrigation from the
1970s to 1990s, and almost 70% of irrigation water in 2004 (Wang
et al., 2006a, 2007a). The south part of the NCP showed lower rates
of decline than the northern part, where the ratio of groundwater
abstraction to recharge was above 1.5 as reported by Liu et al.
(2001). During 2004–2006, the groundwater table was still
decreasing in the piedmont plain, including Beijing, ShijiaZhang
and Baoding locations, while in the central and littoral plain,
groundwater levels were relative stable with no or very little
decline (Wang et al., 2009c). Across Hebei province within the NCP,
there was an average decline in groundwater table from 13.5 m in
1995 to 15.6 m in 2000 with a rate of �0.42 m/yr (Xu and Cai,
2005). Wang et al. (2009a) also reported that about half of the
sampled communities from seven provinces in northern China
showed little or no decline in groundwater tables from 1995 to
2004, with only 11% of the sampled communities having
groundwater table decreases greater than 1.5 m per year. This
result indicted that the groundwater resources crisis may not be
serious across all parts of the NCP (Wang et al., 2009a).

In light of these recent declines in groundwater levels, however,
there is a water deficit of more than 4.00� 1010 m3 between water
supply and demand in the region (Brown, 2001). In another study,
annual water deficit in the NCP was estimated as 2.28� 1010 m3

(349 mm) based on the irrigated area (Lin et al., 2000). Due to the
variation in annual rainfall, water deficit ranges from 1.85� 1010 m3

in a normal year (P = 50%) to about 3.25� 1010 m3 in a dry year
(P = 75%), and the uneven distributions of annual rainfall also



Fig. 2. Distribution of water resources (volumes in 108 m3) averaged from 1956 to 1979 across the three river basins (Huai, Huang (Yellow), and Hai rivers from south to north)

in the North China Plain (adapted from Liu and Wei, 1989) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of the

article.).
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aggravate the water deficit situation (Liu and Xia, 2004). As water
supply from surface water and groundwater will decline, regional
water resources are expected to be more vulnerable to over-use and
pollution under global warming trends (Liu and Xia, 2004). On the
other hand, the irrigation utilization efficiency is only 25–40% due to
the high losses to drainage and evaporation in water delivery
systems (Xu, 2001), along with environmental problems, such as a
salinization (Nickum, 1988). Improving irrigation delivery system
and water availability are essential to enhancing WUE and
minimizing environmental problems in the NCP, but need more
effort and help from both farmers and local government as discussed
by Wang et al. (2005c, 2009a).Other approaches have also been
presented and discussed for mitigating the increasing water deficits
and environmental problems, such as using polluted or saline water,
transferring water from the Yangtze River to the NCP (Liu et al., 2001;
Fig. 3. Groundwater table dynamics from 1974 to 2008 at Shijiazhuang city in the

North China Plain (Dr. Xiying Zhang provided these data).
Barnett et al., 2006), and more efficient water utilization. Other
studies attempted to investigate the water problems from a
socioeconomic view (Huang et al., 2009; Wang et al., 2006b; Yang
et al., 2003). As reported by Webber et al. (2008), however, there is
no simple solution to water resource problems in the Yellow River
basin and some solutions lie outside the basin requiring integrated
social and economic management, and local farmers and govern-
ments collaborations (Barnett et al., 2006).

In the NCP, the area of agricultural land is about 8.85 � 107 ha
with an irrigated area of 6.53 � 107 ha, which consumes about 70%
total water used (Lin et al., 2000). An analysis of water deficits in
the NCP using a water balance method is presented in Fig. 5. The
average water deficit across the region is 222 mm with an aridity
index (rainfall/potential ET) of 0.76, and decreases from the Hai
and Yellow River basins (345 mm) to the Huai River basin (92 mm).
The three river basins have different water resource situations as
indicated in Figs. 2 and 5. Based on the data from 1995, 1996 and
1997, the Yellow River basin only accounts for 3–4% of the total
water resources in the NCP, and Huai River and Hai River basins
account for 60–75% and 25–40% of the water resources,
respectively, which is similar to the averaged values from multiple
years (Fig. 2). The Hai River and Yellow River basins have similar
water deficits but different water supplies. River water is the main
water resource in the Yellow River basin, whereas surface water
from the mountainous areas and groundwater are abundant in the
Hai River basin. Huai River basin has the lowest water deficit level
with adequade surface water and groundwater. In this context,
different agricultural water management strategies can be applied
according to the different levels of water supplies and deficits in
each river basin.

3. Current WUE in the NCP

The WUE values for the main crops of wheat and maize in the
NCP are still low and vary spatially. Yet there has been an increase
in WUE from 0.23 to 0.90 kg/m3 for cereal crops in Fengqiu area



Fig. 4. Changes in groundwater table depths during the thirty years from 1964 to 1993 at different locations in the North China Plain (adapted from Hu et al., 2005).
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(Henan province) during the past 50 years mainly due to increasing
irrigation and fertilizer inputs (Xu and Zhao, 2001). In another
study based on data from 4422 sites across 22 provinces in China,
the averaged WUE values were estimated as 1.1 kg/m3 for the
cereal crops under well irrigated conditions (Duan and Zhang,
2000). The WUE for wheat and maize ranged from 1.0 to 1.9 kg/m3

under well managed experimental sites in the NCP (Deng et al.,
2006; Wang et al., 2002), which is comparable to the reported WUE
values based on a global survey (Zwart and Bastiaanssen,
2004).Above results show that WUE in farmer’s fields is generally
lower than on the experimental sites due to the irregularity and
deficit of irrigation amounts and limitations of soil nutrients, pest
and weeds (Duan and Zhang, 2000). Since the traditional
management generally irrigated in excess of crop requirements,
with totally 300–500 mm (4–6 times per season) for wheat and
100–300 mm (1–3 times per season) for maize (Zhang et al.,
2006b). It is possible to reduce water consumption with no or little
reduction in grain yield (Wang et al., 2002; Hu et al., 2006), thereby
increasing WUE.

4. Agronomic management for high WUE

Stanhill (1986) proposed three ways of coping with water
deficits: (1) reducing water delivery losses in irrigation systems;
(2) improving soil water availability to crop roots; and (3)
increasing crop water use efficiency. Other studies have pointed
Fig. 5. Water resource balance (Runoff + Potential Evapotranspiration

(PET) �Water resource supply = Water deficit) in the three river basins in the

North China Plain (adapted from Liu and Wei, 1989).
to socio-economic factors, such as the irrigation institutional
reforms, privatization of wells, government policy and the
response of farmers to water crisis and incentives in the NCP
(Blanke et al., 2007; Lohmar et al., 2003; Wang et al., 2009a). They
found that with increased private ownership of wells and better
water delivery, such as low-pressure water underground pipeline
conveyance systems, the water delivery efficiency was improved in
recent years but needs to be further extended widely in the NCP.
Economic incentives were also effective in getting farmers to save
water. However, the traditional irrigation technologies practiced
by farmers, such as flood, border and furrow irrigation methods,
are still used widely in the region and constrain the efficiency of
agricultural water utilization. The household-based water-saving
technologies, including plastic sheeting, retaining crop stubble on
the surface, and drought resistant varieties have been adopted in
recent years (Blanke et al., 2007; Wang et al., 2009a), but the
innovative water-saving irrigation management, such as regulated
deficit irrigation strategies have not been adopted widely by the
farmers for economic reasons.

4.1. Increasing soil water availability by soil surface management

Soil evaporation is an important component of ET, and is mainly
controlled by soil surface energy balance and soil hydraulic
properties. Soil evaporation can be altered by soil surface
management, such as tillage, crop residue cover and mulching,
and thus affect field-level WUE. Tillage is one of the traditional soil
management practices for weed control and seed bed preparation
to increase crop yield in irrigated agriculture in the NCP, but has
influence on soil properties and soil water storage in dryland
agriculture without mulching as commonly practiced by farmers
in the NCP (Li et al., 2007b; Shangguan et al., 2001; Wang et al.,
2007c). Wang et al. (2002) reported that about 90% rainfall in the
summer can be stored by soil with deep tillage. Jin et al. (2006)
found that deep tillage with crop residue mulching reduced runoff
by 50% and soil erosion by 90% compared with conventional tillage
(15–20 cm depth without mulching). However, tillage effects may
be short-lived and the effects of tillage on long-term infiltrability
have been mixed due in part to spatial and temporal variability of
field soils (Strudley et al., 2008) and the differences in management
and weather conditions. Furthermore, the effects of tillage on WUE,
and crop yield are complex and related to other management
practices, such as crop residue management (Hatfield et al., 2001).
Table 2 is a summary of recent studies on the effects of tillage on ET
and WUE under irrigated agriculture in the NCP. Although there is
great variability in WUE among these studies across different soil
and climate conditions, conventional tillage (CT) showed higher



Table 2
Evapotranspiration (ET) and water use efficiency (WUE) responses to tillage practices in the North China Plain.

Reference Location Crop type Tillage practicea ET (mm) WUE (kg/m3)

Su et al. (1999) Xinxiang, Henan Maize CT 438 1.85

No tillage 397 2.20

Zhang et al. (2000a) Jingxian, Hebei Maize CT 478 1.79

Reduced tillage 483 1.73

No tillage 425 2.05

Zhang et al. (2002a) Yucheng, Shandong Maize CT 362 –

Reduced tillage 377 –

No tillage 359 –

Zhang et al. (2006a) Gaocheng, Hebei Wheat Deep tillage 548 1.41

No tillage 576 1.38

Chen et al. (2006b) Luancheng, Hebei Wheat Conventional tillage (CT) 234 1.51

No tillage 430 1.11

Li et al. (2007c) Luancheng, Hebei Wheat CT 373 2.06

CT + Residues 409 1.83

Rotary tillage with residues 425 1.45

Zero tillage 369 1.39

a CT is the conventional tillage, 15–20 cm depth by plough.
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WUE than zero tillage by about 29% for wheat due to poor seeding
caused by previous maize residues under zero tillage conditions (Li
et al., 2007c). Here, CT is defined as tillage to 15–25 cm depth
without mulching commonly practiced by farmers in the NCP. For
maize, the opposite results were obtained with a 17% higher WUE
under zero tillage with residue cover due to increased grain yield
and similar ET. In these studies, the differences in WUE among
tillage practices were attributed to either differences in ET, or grain
yield or both depending on the crop. Reasonable tillage practices,
such as reduced tillage with crop straw mulching can increase
WUE by about 13% (0–48%) for wheat and by about 17% (5–23%) for
maize depending on soil types, climate (rainfall) and other
management practices. Other studies on conservation tillage,
including reduced or no tillage with crop residue mulching in the
dryland agriculture in northwest China found that it could
effectively conserve soil water, reduce soil erosions, and improve
crop yield and WUE (Gao et al., 2003; Jin et al., 2007; Wang et al.,
2007c). However, conservation tillage should be carefully applied
in irrigated agriculture, due to its negative influence on early crop
growth and yield (Chen et al., 2007a).

Hatfield et al. (2001) concluded that WUE can be increased by
25–40% through soil surface managements based on experi-
ments conducted in many countries. The effects of crop straw
and residue mulching on WUE varied among crops, seasons and
other management practices (Hatfield et al., 2001). Deng et al.
(2006) found that WUE was improved by 10–20% using crop
residue management in northern China. Table 3 summarizes the
recent studies on WUE in response to crop straw or residue
management in the NCP. Residue mulching can improve WUE by
about 13–27% for wheat or spring by increasing soil water
storage with reducing soil evaporation by 17–68 mm during the
early crop stages and fallow periods (Zhao et al., 1996), but the
total ET values were similar between mulching and no mulching
treatments (Table 3). For wheat, very different results were
reported. Zhang et al. (2003) found an increase in WUE under
mulching conditions, but Chen et al. (2007a) reported a similar or
a slight decline in WUE under mulching conditions mainly due to
delayed wheat growth caused by the low soil temperature in
early spring. However, most studies showed that mulching with
crop residue can improve maize yield and WUE (Table 3). In
dryland agriculture, residue mulching can significantly improve
WUE of wheat because more soil water is available under
mulching, which can offset the negative influence of the low
temperature on crop growth (Xu et al., 2006).
Plastic film mulching is another water-saving technique devel-
oped recently, which can reduce soil evaporation substantially by
about 50% compared with no mulching. Although this technique is
generally used to increase soil temperature for better crop growth, it
can also save water especially under non-irrigated conditions, such
as rainfed maize in the north and northwestpart of China. (Deng
et al., 2006; Yuan et al., 2006; Zhang et al., 2005a). However, due to
the economic costs, plastic film is mainly applied to cash crops, such
as vegetable and oil crops, under irrigated conditions. On the other
hand, plastic film mulching has some disadvantages, such as
premature senility and difficulty to removal and disposal.

4.2. Soil nutrient management

Improving soil nutrient status can have a positive influence on
WUE (Hatfield et al., 2001; Wang et al., 2002). In China, previous
studies mainly focused on the effects of soil nutrients on crop yield
and WUE in dryland agriculture (Xu et al., 2007; Yu et al., 2005). For
irrigated agriculture, most studies were focused on how soil nutrient
management affected crop yield and grain quality (Yu et al., 2002;
Xu et al., 2003). Recently, researchers have paid more attention to
fertilizer effects on WUE and environmental impacts (Fang et al.,
2006; Liu et al., 2003; Yi et al., 2008). There is a great variation of
WUE reported in the literature across different years or locations as
influenced by soil nutrient management in the NCP (Table 4).
Generally, nitrogen (N) application increased WUE with maximum
WUE obtained at N rates ranging from 150 to 250 kg N/ha per crop
season depending on crop types, soil and climate conditions. Current
N inputs are generally excessive with N application rates of 250–
300 kg N/ha per crop or higher for cash crops, which results in low N
use efficiency and high N losses (about 70 kg N/ha per crop) (Fang
et al., 2006; Liu et al., 2003). Because soil N availability is influenced
by multiple factors, such as climate, soil type, tillage, and crop
residue and rotation management (Hatfield et al., 2001), responses
of crop yield and WUE to N management vary greatly. Some studies
showed a slight increase (about 10–20%) in WUE with N application
rate (Wang et al., 2007b,e; Zhong et al., 2000), whereas others
showed a large increase (more than 50%) in WUE with N application
rate (Dang et al., 2006; Wu and Yang, 2004; Zhao et al., 1999). This
discrepancy was probably due to the difference in N supply from
soils with different mineralization across the region. In general, WUE
increased more for maize than for wheat (Table 4), indicating a
higher response to water and N by maize than by wheat. Fertilizer
(mainly N fertilizer) applications increased WUE by about 20% on



Table 4
Water use efficiency (WUE) response to nitrogen (N) rates in the North China Plain.

Reference Location Soil type Year N rates (kg/ha) Crop WUE (kg/m3)

Noa Medium High

Zhao et al. (1999) Zhengzhou Henan Sandy loam 1995–1996 0–300 Wheat 0.96 1.52 1.37

Zhong et al. (2000) Mengjing Henan Loam 1992–1993 0–300 Wheat 0.64 – 0.83

Li et al. (2000) Wuqiao Hebei Clay loam 1997–1998 0–375 Wheat 0.71 1.18 1.10

Wu and Yang (2004) Jingxian Hebei – 1996–1998 0–450 Wheat 0.54 1.67 1.46

Dang et al. (2006) Changwu loam 1998–1999 0–180 Wheat 0.76 1.02 1.05

Shanxi 1999–2000 0.88 1.39 1.41

2000–2001 0.25 0.83 0.98

2001 0–180 Maize 1.18 1.64 1.75

Wang et al. (2007c) Wuqiao Hebei Clay 2004–2006 0–295 Wheat 1.81 2.04 2.02

Wang et al. (2007e) Huantai Shandong Sandy loam 2003–2004 0–300 Wheat 1.16 1.27 1.34

Wu et al. (2008b) Wuqiao Hebei Clay loam 2003–2004 157–295 Wheat – 1.86 1.78

Yi et al. (2008) Wuqiao Clay 2004 0–180 Maize Zhengdan958 1.85 1.98 2.00

Hebei 2005 2.11 3.23 3.36

2004 0–180 Maize Nongda108 2.16 2.22 2.32

2005 2.69 3.37 4.03

a No, Medium, and High denote zero, medium and highest N application rates for specific experimental N treatments.

Table 3
Evapotranspiration (ET) and water use efficiency (WUE) responses to mulching with crop straw or residue in the North China Plain.

Reference Location Soil type Crop Year ET (mm) WUE (kg/m3)

Mulching No

mulching

Mulching No

mulching

Zhao et al. (1996) Beijing – Wheat 1989–1990 376 399 0.94 0.74

1990–1991 315 320 0.93 0.82

1991–1992 297 301 1.08 0.89

1992–1993 262 261 1.05 0.89

Maize 1989 402 396 1.76 1.45

1990 396 407 1.51 1.22

1991 404 407 1.08 0.93

1992 320 291 1.16 1.01

Zhu et al. (2000) Zhengzhou Sandy loam Wheat 1998

Henan Low water 215 201 1.39 1.34

Medium water 385 393 1.53 1.31

High water 391 396 1.50 1.36

Zhang et al. (2002b) Luancheng Loam Maize 1999

Hebei Low water 338 – 2.26 –

Medium water 367 – 2.22 –

High water 430 – 2.00 –

Maize 2001

Low water 243 – 2.45 –

Medium water 352 368 2.09 1.82

High water 412 – 1.93 –

Chen et al. (2002) Luancheng Hebei Loam Maize 2001 331 334 2.78 2.47

Zhang et al. (2003) Luancheng Hebei Loam Wheat 1998–1999 367 390 1.94 1.72

Maize 1999 386 431 1.84 1.55

Zhang et al. (2004) Luancheng Loam Maize 1999 475 478 2.05 1.73

Chen et al. (2007a) Luancheng Loam Wheat 2000–2001 418 395 1.55 1.51

Hebei 2001–2002 – – 1.21 1.25

2002–2003 – – 1.01 1.05

2003–2004 – – 1.50 1.49

2004–2005 – – 1.31 1.35

Li et al. (2007c) Luancheng Loam 2004–2005 409 373 1.83 2.06

Hebei 425 – 1.45 –

369 – 1.39 –

431 – 1.31 –

Wang et al. (2007d) Zhengzhou Sandy loam Maize 2005

Henan Sole planting 408 417 1.08 0.92

Bed planting 426 422 1.22 1.16
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average (9–66%) for wheat and by 26% (2–53%) for maize (Table 4).
This result was similar to the report from Hatfield et al. (2001) who
reported that soil nutrient management increased WUE by15–25%
across a range of climates and crops. The high variability of measured
WUE indicated strong interactions between these management
practices across the different soil and climate conditions.

Interactions between soil water and N greatly affect soil water
and N balance and WUE, and N application rate in the NCP should
be reduced under water limited condition for more efficient use of
water and N (Fang et al., 2006, 2008; Liu et al., 2003). Other studies
found that increase in WUE by N application was mainly due to a
deep root system with more soil water available for crops (Du
et al., 1999; Li et al., 1994, 2001; Song and Li, 2004). Shen et al.
(2001) reported that the optimal N rates for high wheat yield were
about 300 kg N/ha under adequate irrigation conditions and
200 kg N/ha under limited irrigation conditions. Wu et al. (2008b)
and Wang et al. (2007d) found N application rates of 150–200 kg
N/ha were suitable for wheat under limited irrigation conditions.
Li et al. (2003) found an N application rate of 144 kg N/ha with
highest N recovery and lowest N loss under limited irrigation
conditions during wheat seasons. These results suggested N
application rates should vary according to irrigation levels (Wang
et al., 2008).

Only limited studies have documented the effects of phospho-
rus fertilizer on crop WUE. Liang (1996) found that phosphorus
nutrition can improve root water potential, root growth and dry
weight, and grain WUE under water stress conditions. Other
studies reported that phosphorus fertilizer can increase WUE
especially under moderate water stress conditions, and the effects
of phosphorus fertilizer on WUE had a close relationship with the N
and irrigation management (Zhang et al., 2000b; Zhang and Li,
2005). Some other studies reported that potassium can increase
crop drought resistance and WUE by increasing crop growth and
reducing water consumption (Li et al., 2001, 2005b).
Table 5
Water use efficiency (WUE) response to irrigation managements in the North China Pl

Reference Location Soil type Year

Zhang et al. (1998a) Beijing 1991–1

Zhang et al. (1999) Luancheng Hebei Sandy loam 1986–1

Gaocheng Hebei Loam 1982–1

Linxi Hebei Loam 1982–1

Nanpi Hebei Loam 1986–1

Wang et al. (2001) Luancheng Hebei Loam 1986–1

Zhang et al. (2003) Luancheng Hebei Loam 1997–2

Zhang et al. (2004) Luancheng Hebei Loam 1998–1

1999–2

2000–2

1998

2001

Li et al. (2005a) Wuqiao Hebei Sandy clay loam 1994–1

1995–1

1996–1

Sun et al. (2006) Luancheng Hebei Loam 1999–2

Fang et al. (2007) Yucheng Shandong Sandy loam 2001–2

2002–2

2002

Qiu et al. (2008) Luancheng Hebei Loam 2002–2

2003–2

a No, Medium, and High denote zero, medium and highest irrigation levels for speci
4.3. Irrigation management

Under field experimental conditions in the NCP (Table 5), the
highest WUE was generally obtained at the moderate supplemen-
tal irrigation levels from 150 to 250 mm for wheat depending on
experimental site conditions. The high variation in WUE across
seasons or locations suggested that management other than
irrigation, such as tillage and soil nutrients, influence WUE greatly.
In the NCP, irrigation management can improve WUE of wheat by
about 25% (7–88%). For maize, very few studies were carried out to
investigate the effects of supplemental irrigation on WUE mainly
due to the high rainfall during the maize season. Zhang et al. (2004)
found no significant relation between maize yield with irrigation at
Luancheng Ecological station, NCP (Hebei province), whereas Fang
et al. (2007) found a severe water stress occurred at the early stage
(jointing stage) of maize, which can substantially reduce maize
yield even with irrigation later in the season.

Several water-saving irrigation strategies have been developed
for high WUE, including limited irrigation (Shan et al., 2006),
regulated deficit irrigation (Kang et al., 2000; Zhang et al., 1998a;
Cui et al., 2008) and controlled alternative partial root-zone
irrigation (Kang et al., 1998; Kang and Zhang, 2004; Li et al., 2007a).
These irrigation techniques can save 15–35% of irrigation water
with an increase in WUE of 10–30% as reported by studies in China
(Kang et al., 1998). Zhang et al. (1998a) reported that one irrigation
application at booting stage produced comparable grain yield with
24–30% higher WUE compared to the four irrigation treatments in
the NCP, and the increased WUE was attributed to a deep root
system associated with early water stress and improved harvest
index. In another study, Kang et al. (2002) concluded that
regulating soil water depletion moderately in the early vegetative
growth period and more during maturity resulted in high grain
yield and WUE in a semiarid area. Kang and Zhang (2004) also
reviewed alternative controlled partial root zone irrigation studies
ain.

Crop Irrigation (mm) WUE (kg/m3)

Noa Medium High

995 Wheat 0–300 0.98 1.47 1.13

995 Wheat 0–249 1.22 1.39 1.10

985 Wheat 0–369 1.07 1.36 1.17

986 Wheat 0–435 1.06 1.35 0.91

992 Wheat 0–251 0.98 1.18 1.13

995 Wheat 0–400 1.15 1.29 1.11

000 Wheat 0–280 1.73 1.76 1.38

Maize 1.55

999 Wheat 250–400 1.22 1.42 1.24

000 Wheat 250–400 1.61 1.49 1.16

001 Wheat 250–400 1.20 1.29 1.20

Maize 0–180 1.41 – 1.01

Maize 0–180 1.39 – 1.72

995 Wheat 0–300 1.48 1.62 1.23

996 Wheat 0–300 1.73 1.73 1.58

997 Wheat 0–300 1.56 1.75 1.74

002 Wheat 80–400 1.52 1.52 1.08

002 Wheat 0–180 1.41 1.91 1.67

003 Wheat 0–180 1.58 1.58 1.36

Maize 150 1.55 1.92 2.00

003 Wheat 0–300 2.13 – 1.13

004 Wheat 0–300 1.48 – 1.29

fic experimental N treatments.
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in China, and found that this irrigation technique can reduce water
consumption by 35% with only about 6–11% reduction in biomass.
Hu et al. (2009) found alternative controlled partial root zone
irrigation could improve both N and water use efficiency for maize
with less (70%) irrigation water. These irrigation strategies are
being applied for many cash crops, such as vegetables under
various conditions, but are rarely applied to cereal crops under
field conditions.

All these irrigation techniques require a better understanding of
the sensitivities of crops to water stress and its ecological and
physiological basis, which generally varies among different crop
growth stages (Shan and Zhang, 1999; Zhang et al., 1999). For
example, the sensitive stages of wheat to water stress are from
jointing stage to grain filling stage depending on climate
conditions (Table 5). Some studies (Chaves and Oliveira, 2004;
Jones, 2004) have also shown that (1) the responses of different
physiological processes, such as cell growth, photosynthesis,
transpiration and photosynthate transfer between organs, to
water stresses were also different; (2) the relationship between
crop yield or WUE and ET showed WUE generally reached its
highest value before maximum crop yield; and (3) the interactions
between crop canopy and roots, such as abscisic acid (ABA),
generally resulted in more efficient water use by crop. These
results provide a theoretical basis to improve WUE by regulating
irrigation according to plant water demand as discussed above.
Another method is to schedule irrigation based on crop water
stress as detected by canopy surface temperature measured with
infrared thermometers (Alderfasi and Nielsen, 2001; Nielsen,
1990; Nielsen and Gardner, 1987). Correctly determining crop
water stress index (CWSI) is a prerequisite of this irrigation
management. Many studies were carried out to compare and
improve CWSI calculation methods across different crop and
climate conditions (Idso et al., 1981; Jackson et al., 1988; Jones,
1999). In the NCP, Yuan et al. (2004) found that the Jackson CWSI
method was better for detecting crop water stress of winter wheat
compared with the Idso definition (Idso et al., 1981) or the Alves
definition (Alves and Pereira, 2000). Li et al. (2010) concluded that
CWSI calculated by the Jackson method based on the canopy-air
temperature difference may be used for irrigation scheduling and
agricultural water management of maize in the NCP. Other
methods to monitor plant water stress for irrigation scheduling
are soil water measurement, plant water potential, tissue water
status measurement and stomatal conductance (Jones, 2004,
2008). Remote sensing provides another promising tool to monitor
soil and crop water stress status for irrigation management at large
areas (Jones, 1999).

4.4. Crop improvement and breeding

Drought resistant crop cultivars have been shown to improve
crop WUE, but crops with high drought resistance are usually
associated with low grain yield, which limits the application of
these cultivars in the NCP (Wang et al., 2002; Zhang et al., 2006c).
High WUE has become a very important indicator for crop breeding
because it combines drought resistance and high potential yield
(Zhang et al., 2006c). Based on the drought resistance and WUE for
wheat, for example, there are four cultivar types: (1) low WUE with
low ET and low grain yield; (2) high WUE with both moderate ET
and grain yield; (3) highest WUE with highest grain yield and
moderate ET; and (4) lowest WUE with high ET and low grain yield.
Among the four cultivar types, types 2 and 3 are the favorite crop
breeding traits.

Many studies have found that large variations in WUE among
different crop types were due to the different responses of these
crops to water stress (Shan and Zhang, 1999; Zhang et al., 2006c),
and even for the same crop, such as wheat, different crop cultivars
also had different WUE under water stress conditions (Yi et al.,
2008; Zhang et al., 2000c). As much as 50% difference in WUE was
found among wheat cultivars in semiarid areas (Shan et al., 2006).
Zhang and Shan (1998b) demonstrated a progression in WUE from
diploid to hexaploid wheat cultivar in the semiarid area. Zhang
et al. (2005b) reported that wheat cultivars showed a large
difference of 40% in WUE at leaf level (photosynthesis rate/
transpiration rate). For different crop cultivars, WUE generally has
weak relationship to physiological processes, such as leaf
photosynthesis and transpiration rates, but is closely related to
grain yields (Zhang et al., 2006b). These results showed great
opportunities to select drought resistant crop cultivars with high
WUE. In the NCP, WUE for wheat and maize showed an obvious
increase with time as reported by Zhang et al. (2005b). An increase
in WUE of about 40% for maize and about 20% for wheat from 1982
to 2002 was found in the NCP, which was due to both improved
crop cultivars and management practices.

4.5. Cropping systems

The main double cropping system of wheat and maize with high
water consumption may not be sustainable considering the
increasing water deficit in agriculture and serious environmental
problems in the NCP. Other alternative cropping patterns or
farming systems with less water requirement may be helpful to
mitigate the water crisis (Liao and Huang, 2004). However, limited
studies have been conducted on how cropping systems, such as
wheat–maize two crops one year, winter wheat–summer maize–
spring maize three crops two years, faba bean–maize, spring
soybean two crops one year, influenced WUE and water
consumption in the NCP (Liu et al., 2008a,b; Ma et al., 2008; Wu
et al., 2008a; Ye et al., 2008). The main conclusion thus far is that
wheat and maize double cropping systems can use water more
efficiently with higher production but consume more water
compared to other cropping systems, such as peanut–wheat–
maize, and bean–maize in the area. However, some alternative
cropping systems, such as crop–fruit tree systems, may have
higher economic returns than the main cropping system. These
lower water-consumption cropping systems can be alternatives to
the main cropping system, especially in areas with serious water
deficit. Rainfed cropping systems in the NCP should be investigated
for possible transitions from irrigated agriculture to rainfed
agriculture in the area to cope with the decline in water supply
and mitigate the water crisis in the future.

The partitioning of water between wheat and maize in the
double cropping system also has a great influence on WUE mainly
due to the uneven distributions of the annual rainfall between crop
seasons. Supplemental irrigation in the wheat season can
contribute to a high initial profile water storage for the subsequent
maize (Fang et al., 2007), and mulching with crop residues during
wheat season can maintain more water for the subsequent maize
as reported by Chen et al. (2007a). High seasonal rainfall during the
maize season contributes significantly to a high soil water level
before wheat planting in the NCP (Fang et al., 2010). In this context,
irrigation strategies should consider the whole cropping system
and the interactions between crops to improve WUE of all crops
across different climate conditions.

4.6. Agricultural systems modeling at field scales

Variations in WUE can be attributed to agricultural manage-
ment (e.g., soil management practices, irrigation, crop cultivars)
and environmental factors (e.g., soil and climate conditions) (Zwart
and Bastiaanssen, 2004). Climate and soil variations are the biggest
obstacles to extending advanced management strategies from
experimental results to other field conditions, and to improve
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regional WUE. System modeling and analyses are useful tools to
evaluate various water management scenarios across various
climate conditions and soil types (Ma et al., 2007). In the NCP, only
in recent years, agricultural system models have been used to
investigate soil water balance and WUE across various soil, climate
and management conditions (Yu and Wang, 2001). Wang et al.
(2001) used a process-based model (WAVES) to simulate the effect
of irrigation management on crop growth and soil evaporation, and
found that mulching can reduce soil evaporation up to 50% in the
NCP. Yang et al. (2006) found that 100 mm irrigation water can be
saved with an improvement of WUE from 1.27 to 1.45 kg/m3 for
wheat (ET was reduced by 76 mm) based on a 12-year simulation
period using CERES-wheat model in the NCP. Chen et al. (2007b)
used a crop growth model coupled with water and N management
modules to optimize water and N use efficiency for wheat, and
found that a 13% increase in WUE along with a 25% reduction in
irrigation was obtained for the optimized management scenario
compared with the control. Several studies using the Root Zone
Water Quality Model (RZWQM) investigated interactions between
soil water and N and its impact on crop yield and environmental
quality in the NCP (Yu et al., 2006; Hu et al., 2006; Fang et al., 2008),
which showed that there was a great potential to reduce current N
inputs according to the irrigation levels with little or no influence
on crop yield.

As examples of managing N in a wheat–maize system in the
NCP, Yu et al. (2006) showed that a reduction of 25% of current
water and N applications reduced N leaching by 24–77% with crop
yield reduction of 1–9% only based on RZWQM sensitivity analysis
results. Hu et al. (2006) also found that typical applications of
water and N can be reduced by about 50% with only little reduction
in crop yield (less than 10%) but with about 50% reduction in N
leaching. Fang et al. (2008) also used RZWQM to evaluate the
effects of different combinations between soil water levels and N
application rates, and concluded that, auto-irrigation triggered at
50% of the field capacity and recharged to 60% field capacity in the
0–50 cm soil profile with 200 kg N/ha per crop application rate
were adequate for obtaining acceptable yield in a wheat and maize
double cropping system. They also showed potential savings of
more than 30% of the current N application rates per crop from 300
to 200 kg N/ha, which could reduce about 60% of the N leaching
without compromising crop yields. Another example for evalua-
tion of different irrigation scheduling using RZWQM in the NCP
was reported by Fang et al. (2010). The results showed that the
most sensitive stage of wheat to water stress was the stem
extension (jointing) stage, and irrigation applied during this stage
achieved higher WUE. Two irrigations applied at jointing and
booting stages resulted in the highest yield and WUE. Irrigation
before planting wheat commonly practiced by local farmers should
be postponed to the most sensitive stage for higher WUE. In
another study, Chen et al. (2010) used the Agricultural Production
Systems Simulator (APSIM) to investigate the effects of climate
variations and irrigation on crop WUE based on long-term weather
conditions, and recommended one (70 mm), two (150 mm) and
three (200 mm) irrigations for wheat, and zero, one (60 mm), and
two (110 mm) irrigations for maize in the wet, medium and dry
seasons, respectively. These modeling studies provided useful
guidance to managing limited water resources, and results can be
transferred more efficiently across different climate conditions.

However, the effect of soil characteristics on soil water balance
and WUE have not been quantified fully under different
agricultural management conditions. As discussed above and in
other studies (McVicar et al., 2002), very large deviations in WUE
can occur among different soil types (Ma et al., 2002), because soil
type controls soil water and nutrient dynamics (Wang et al.,
2009b; Ma et al., 2007). Several studies were conducted to evaluate
irrigation and N managements across different soil types and
climate conditions in the NCP by linking geographic information
systems (GIS) and crop growth model (Huang et al., 2001; Gao
et al., 2006a,b), and found close relationship among WUE and
rainfall, irrigation and soil hydraulic conductivity across the
different soil types, and provided useful information on regional
agricultural management.

5. Regional WUE assessment and improvement

Crop WUE at regional scales is a very important indictor for
regional water resource assessment and management. Quantify-
ing regional WUE is essential to understanding variations in WUE
as influenced by multiple factors, such as water resources, soil,
climate and agronomic management. Many studies have focused
on the assessment of water resources and its potential influence
on agricultural production in the NCP (Liu and Xia, 2004). McVicar
et al. (2002) defined regional agricultural WUE as grain yield per
water available (mm) for crop growth, and monitored regional
WUE in the NCP, where WUE from 75 to 80% of observed areas was
0.5–1.5 kg/m3 in the Hebei province from 1984 to 1996. Large
spatial and temporal variations in WUE can occur due to rainfall
distributions, water quantity and other management factors. Mo
et al. (2005) using the SWAT model with remotely sensed data
simulated regional WUE of 1.23–1.58 kg/m3 for irrigated wheat
and 1.10–1.93 kg/m3 for irrigated maize across the NCP, and
concluded that improving irrigation efficiency can significantly
enhance crop yield and WUE in the area. In another study, Liu et al.
(2007), using the GIS-based EPIC model, reported that the
simulated regional WUE averaged over different areas in the
NCP was 1.20 kg/m3 (0.75–1.42 kg/m3) for irrigated wheat. All
these studies showed a 30–50% higher WUE for irrigated
agriculture than rainfed agriculture, confirming that irrigation
in the NCP is the most important method to maintain high yield
and WUE. Based on the simulated WUE levels for irrigated areas in
the NCP (Liu et al., 2007), about 360 mm of irrigation water is
needed for both wheat and maize, which obviously exceeded
water supply of about 160 mm (considering water transfer
efficiency) in the region (Lin et al., 2000), and will likely result
in a quicker decline in groundwater levels in the area (Chen et al.,
2010).

Climate change also has a likely influence on WUE but with high
uncertainties due to the magnitude and pattern of climate change
and the response of ecosystem. In theory, increased atmospheric
CO2 concentration can increase WUE (Grant et al., 1999; Gregory
and Ingram, 2000; Triggs et al., 2004). Other factors, such as air
temperature increase and changes in rainfall patterns change may
decrease crop yield and WUE, especially in water-limited semiarid
areas (Ju et al., 2005; Lin et al., 2005). Xiong et al. (2007) used the
CERES-Maize model to simulate rainfed and irrigated maize yields
under two climate change scenarios, and found a decrease in maize
yield without considering CO2 fertilization effect. Maize yield can
also increase under rainfed conditions but decrease for irrigated
maize when CO2 fertilization effect was taken into account. In
another study, based on survey data from households, Wang et al.
(2009b) found that global warming may affect rainfed farmers
negatively but benefit irrigated farmers, and that agricultural
irrigation supply will play a more important role in maintaining
high yield under future climate change conditions. The changes in
water resource availability and agricultural water requirements as
influenced by climate change may have substantial influences on
soil water balance, crop water use and WUE in the future (Chen
et al., 2005a, 2006a; Wang et al., 2007e). The uncertainty from the
interactions between climate change, crop response, land use
pattern and water resources availability should be investigated as a
complex system for its impacts on crop yield and WUE (Betts,
2005; Xiong et al., 2009).



Table 6
Water resources balance for Yellow River, Huai River, and Hai River basins in the NCP.a.

Region Crop ETb

(mm)

Rainfall

(mm)

Water resources supplyc

(�109 m3)

Irrigation

amountd

Potential

water deficitse

(�108 m3)

WUEb

(kg/m3)

Yieldf

(�109 kg)

Groundwater

table

Effective

Irrigation

area
Surface

water 1

Surface

water 2

Groundwater mm �108 m3

Yellow River Wheat 550 174 25 100 20 376 418 �273 1.5 21 Decline 100%

440 174 25 100 20 266 296 �151 1.8 20 Decline

330 174 25 100 20 156 173 �29 1.4 12 Decline

220 174 25 100 20 46 51 94 1.0 6

Maize 450 406 44 33 1.8 14 0%

Wheat 550 174 25 100 20 376 209 �64 1.5 11 Decline 50%

440 174 25 100 20 266 148 �3 1.8 10 Decline

330 174 25 100 20 156 87 58 1.4 6

220 174 25 100 20 46 26 119 1.0 3

Maize 450 406 44 16 1.8 7 0%

Huai River Wheat 550 243 298 129 299 307 268 458 1.5 17 100%

440 243 298 129 299 197 172 554 1.8 16

330 243 298 129 299 87 76 650 1.4 9

220 243 298 129 299 �23 �20 746 1.0 4

Maize 450 568 �118 1.8 11 0%

Wheat 550 243 298 129 299 307 134 592 1.5 8 50%

440 243 298 129 299 197 86 640 1.8 8
330 243 298 129 299 87 38 688 1.4 5

220 243 298 129 299 �23 �10 736 1.0 2

Maize 450 568 �118 1.8 5 0%

Hai River Wheat 550 172 79 213 166 378 1390 �932 1.5 71 Decline 100%

440 172 79 213 166 268 985 �528 1.8 68 Decline

330 172 79 213 166 158 581 �123 1.4 40 Decline

220 172 79 213 166 48 176 281 1.0 19

Maize 450 401 49 120 1.8 46 0%

Wheat 550 172 79 213 166 378 695 �237 1.5 35 Decline 50%

440 172 79 213 166 268 493 �35 1.8 34 Decline

330 172 79 213 166 158 290 167 1.4 20

220 172 79 213 166 48 88 369 1.0 9

Maize 450 401 49 60 1.8 23 0%

a Although irrigation can be applied due to the uneven rainfall distributions, seasonal rainfall is generally adequate in amount for maize, and we only calculated the water

resources balance for wheat. Water resources balance was calculated based on the following equations: Evapotranspiration (ET) = Rainfall + water resources

supply + Irrigation.
b Maximum ET is under no-water limited condition based on the references in the NCP (Zhang et al., 1998a, 2004, 2005b; Sun et al., 2006), and WUE values are determined

by the relationship between WUE and ET, where maximum WUE are obtained at the 80% ET level and minimum WUE are obtained at 40% ET level (rainfed condition)

according to above references (Table 5).
c Water resource supplies for the three river basins are the potential water available for irrigation in the regions based on Liu and Wei (1989), and sometimes they may be

not available due to their uneven distributions. Surface water 1 occurs within the river basin and surface water 2 occurs from mountain areas.
d Irrigation and water deficits were calculated based on the effective irrigation area (100% and 50% two levels, and 50% is close to the real condition in the NCP) for wheat

and the total crop yield were also calculated in a same way based on WUE at each water level.
e Water deficits are the difference between water resources supply and irrigation amount. The three scenarios selected with bold are the new scenario combination based

on water allocation, where about 300�109 m3 water from Huai River is allocated to Yellow River (50�109 m3) and Hai River (250�109 m3) to reduce groundwater use and

table decline.
f Crop yield are calculated only based on the irrigated area (effective irrigation area, 100% or 50%), and the effective irrigation area for wheat in the NCP is about 50% of crop

area (Lin et al., 2000). Maize planting area is about 2/3 of wheat area in the NCP according to Yu and Ren (2001).
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6. Regional water resources balance and crop production

Assessment of water resources balance on water supply and
crop water demand is very important for applying reasonable
water management strategies and realize potential water-saving
and high WUE at regional scales. Table 6 presents various scenarios
with different water balances and crop productions under different
ET (40–100%) and WUE levels, where three different regions of the
Yellow, Huai and Hai River basins with different water resources
situations were analyzed (Fig. 2). In the Yellow River basin, water
resources can only maintain up to 60% of the maximum ET for
wheat without resulting in a decline in groundwater when 100% of
crop areas are irrigated, and can maintain about 80% of the
maximum ET for wheat when 50% of crop areas are irrigated.
Similar results were found in the Hai River basin. In these two river
basins, the rainfall for maize is usually adequate (about 80% of the
maximum ET), but supplemental irrigation may be applied due to
the uneven seasonal distributions. Poor irrigation efficiencies and
spatial and temporal variations in water availability may increase
water deficits, and the water deficits under different water supply
levels shown in Table 6 (40–100% of maximum ET) are the best
scenarios. In the Huai River basin, there are no obvious water
deficits in the regions, the surplus water resources can potentially
be transferred to the other two basins. Based on the current
irrigation area (50% of crop land area) in the NCP, three scenarios
for the three river basins were selected with higher crop yield
(highest WUE) and reasonable water balances (e.g., no obvious
decline in groundwater table) (Table 6). About 3.00 � 1010 m3 from
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the Huai River may be allocated to the Yellow River
(0.50 � 1010 m3) and Hai River (2.50 � 1010 m3) basins. Under
such these scenarios, the total crop yield in the NCP is about
1.37 � 1011 kg (0.52 � 1011 kg for irrigated wheat, 0.14 � 1011 kg
for rainfed wheat and 0.71 � 1011 kg for rainfed maize), which is
close to the projected food demand (1.51–1.55 � 1011 kg) in 2010
in the NCP (Yu and Ren, 2001).

7. Discussions and perspectives

Water is the most important limiting factor to agricultural
production in the NCP, and likely will be exacerbated by increasing
food demand and deteriorating soil and water quality (Chen et al.,
2005b; Zhang et al., 1996). Enhancing agricultural WUE at field and
regional scales via innovative management is the key to coping
with the above challenges in the NCP. Soil and irrigation
management are the most important measures, which were the
focus of many studies that showed potential to improve WUE
significantly. Crop breeding has a high potential to save water and
improve WUE in the future (Condon et al., 2004; Passioura, 2006).

Although some improvement in WUE has been achieved in the
NCP during the past 20 years, the current results show that the
WUE in farmer’s fields are still lower than WUE at experimental
sites. There are several research priorities to further improve WUE
at field and regional levels. The interaction among agronomic
management practices across various soil and climate conditions is
one of the most important information studied for designing the
best site-specific strategies. For example, interactions between
irrigation and N management (Xu et al., 2007; Fang et al., 2008),
irrigation method and scheduling (Pereira, 1999), and tillage and
crop residue management (Hatfield et al., 2001), can potentially
improve WUE. Combining multiple management practices should
be more effective in improving WUE than any single management
in the NCP. Understanding the variations in WUE associated with
soil and climate conditions can also contribute to the transfer of
irrigation technology to farmers and to optimizing regional
agricultural water management.

Irrigation is a key to maintain high crop yields and improve
WUE. Further evaluation and optimization from field to regional
scales need to consider soil, climate and water resources
variations. Similar to better N management strategies (Ladha
et al., 2005), irrigation strategies can also be yield-targeting and
variable for different soil conditions based on crop water demand
and water supply. Newly developed precision irrigation has shown
great promise to improve WUE (Jones, 2004, 2008), and can
potentially improve WUE at field and regional scales.

Increasing regional WUE is an important objective for
agricultural water management, but has not been resolved mainly
due to the complex influences of multiple factors, such as soil
variations, hydrological variability, and agronomic managements,
on crop growth and WUE. As suggested by Wang (1993), there are
several approaches to saving water and improving WUE at the
regional level, such as minimizing soil evaporation by proper
irrigation and crop residue cover, improving irrigation delivery
system, optimal water allocation to different fields or crops, and
optimizing irrigation time and amount based on rainfall and water
resource availability. Combining crop water requirements with
specific water resource availability is the key for water allocation
and irrigation management, and for assessing potential water
saving in the NCP. Water-saving irrigation strategies based on the
above results should improve regional WUE significantly. Whole-
system modeling, along with remote sensing and GIS should be
used to address regional WUE issues. We also identified several
knowledge gaps for further increasing WUE in the NCP by: (1)
further understanding of the effects of agronomic management on
WUE across various soil and climate conditions; (2) quantifying the
effects of soil water and N interaction in water-limited agriculture
on water and N-use efficiency; (3) improving irrigation practices
(timing and amounts) based on real-time monitoring of water
status in soil-crop systems; and (4) maximizing regional WUE by
managing water resources and allocation between different
regions.
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